Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587079

RESUMO

BACKGROUNDBroadly neutralizing monoclonal antibodies (bNAbs) represent a promising strategy for HIV-1 immunoprophylaxis and treatment. 10E8VLS and VRC07-523LS are bNAbs that target the highly conserved membrane-proximal external region (MPER) and the CD4-binding site of the HIV-1 viral envelope glycoprotein, respectively.METHODSIn this phase 1, open-label trial, we evaluated the safety and pharmacokinetics of 5 mg/kg 10E8VLS administered alone, or concurrently with 5 mg/kg VRC07-523LS, via s.c. injection to healthy non-HIV-infected individuals.RESULTSEight participants received either 10E8VLS alone (n = 6) or 10E8VLS and VRC07-523LS in combination (n = 2). Five (n = 5 of 8, 62.5%) participants who received 10E8VLS experienced moderate local reactogenicity, and 1 participant (n = 1/8, 12.5%) experienced severe local reactogenicity. Further trial enrollment was stopped, and no participant received repeat dosing. All local reactogenicity resolved without sequelae. 10E8VLS retained its neutralizing capacity, and no functional anti-drug antibodies were detected; however, a serum t1/2 of 8.1 days was shorter than expected. Therefore, the trial was voluntarily stopped per sponsor decision (Vaccine Research Center, National Institute of Allergy and Infectious Diseases [NIAID], NIH). Mechanistic studies performed to investigate the underlying reason for the reactogenicity suggest that multiple mechanisms may have contributed, including antibody aggregation and upregulation of local inflammatory markers.CONCLUSION10E8VLS resulted in unexpected reactogenicity and a shorter t1/2 in comparison with previously tested bNAbs. These studies may facilitate identification of nonreactogenic second-generation MPER-targeting bNAbs, which could be an effective strategy for HIV-1 immunoprophylaxis and treatment.TRIAL REGISTRATIONClinicaltrials.gov, accession no. NCT03565315.FUNDINGDivision of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Anticorpos Anti-HIV , Anticorpos Amplamente Neutralizantes/farmacologia , Anticorpos Monoclonais/farmacologia
2.
Int J Mol Sci ; 24(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36835088

RESUMO

The coordination of cellular biological processes is regulated in part via metabolic enzymes acting to match cellular metabolism to current conditions. The acetate activating enzyme, acyl-coenzyme A synthetase short-chain family member 2 (Acss2), has long been considered to have a predominantly lipogenic function. More recent evidence suggests that this enzyme has regulatory functions in addition to its role in providing acetyl-CoA for lipid synthesis. We used Acss2 knockout mice (Acss2-/-) to further investigate the roles this enzyme plays in three physiologically distinct organ systems that make extensive use of lipid synthesis and storage, including the liver, brain, and adipose tissue. We examined the resulting transcriptomic changes resulting from Acss2 deletion and assessed these changes in relation to fatty acid constitution. We find that loss of Acss2 leads to dysregulation of numerous canonical signaling pathways, upstream transcriptional regulatory molecules, cellular processes, and biological functions, which were distinct in the liver, brain, and mesenteric adipose tissues. The detected organ-specific transcriptional regulatory patterns reflect the complementary functional roles of these organ systems within the context of systemic physiology. While alterations in transcriptional states were evident, the loss of Acss2 resulted in few changes in fatty acid constitution in all three organ systems. Overall, we demonstrate that Acss2 loss institutes organ-specific transcriptional regulatory patterns reflecting the complementary functional roles of these organ systems. Collectively, these findings provide further confirmation that Acss2 regulates key transcription factors and pathways under well-fed, non-stressed conditions and acts as a transcriptional regulatory enzyme.


Assuntos
Acetato-CoA Ligase , Regulação da Expressão Gênica , Animais , Camundongos , Acetato-CoA Ligase/genética , Acetato-CoA Ligase/metabolismo , Acetatos/metabolismo , Ácidos Graxos/metabolismo , Lipogênese , Fígado/metabolismo
3.
Front Pharmacol ; 14: 1293280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38230376

RESUMO

Organophosphate-based chemical agents (OP), including nerve agents and certain pesticides such as paraoxon, are potent acetylcholinesterase inhibitors that cause severe convulsions and seizures, leading to permanent central nervous system (CNS) damage if not treated promptly. The current treatment regimen for OP poisoning is intramuscular injection of atropine sulfate with an oxime such as pralidoxime (2-PAM) to mitigate cholinergic over-activation of the somatic musculature and autonomic nervous system. This treatment does not provide protection against CNS cholinergic overactivation and therefore convulsions require additional medication. Benzodiazepines are the currently accepted treatment for OP-induced convulsions, but the convulsions become refractory to these GABAA agonists and repeated dosing has diminishing effectiveness. As such, adjunct anticonvulsant treatments are needed to provide improved protection against recurrent and prolonged convulsions and the associated excitotoxic CNS damage that results from them. Previously we have shown that brief, 4-min administration of 3%-5% isoflurane in 100% oxygen has profound anticonvulsant and CNS protective effects when administered 30 min after a lethal dose of paraoxon. In this report we provide an extended time course of the effectiveness of 5% isoflurane delivered for 5 min, ranging from 60 to 180 min after a lethal dose of paraoxon in rats. We observed substantial effectiveness in preventing neuronal loss as shown by Fluoro-Jade B staining when isoflurane was administered 1 h after paraoxon, with diminishing effectiveness at 90, 120 and 180 min. In vivo magnetic resonance imaging (MRI) derived T2 and mean diffusivity (MD) values showed that 5-min isoflurane administration at a concentration of 5% prevents brain edema and tissue damage when administered 1 h after a lethal dose of paraoxon. We also observed reduced astrogliosis as shown by GFAP immunohistochemistry. Studies with continuous EEG monitoring are ongoing to demonstrate effectiveness in animal models of soman poisoning.

4.
J Neuroimmunol ; 371: 577948, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35964450

RESUMO

The aim of this investigation was to determine if particular immunoglobulin GM (γ marker) alleles and genotypes were associated with Parkinson's disease (PD) and whether they contributed to the interindividual differences in the level of antibodies to herpes simplex virus type 1 (HSV1), which has been implicated in PD pathology. Using a case-control study design, 94 PD patients and 157 controls were characterized for anti-HSV1 IgG antibodies and genotyped for GM alleles expressed on IgG1 (3,17) and IgG2 (23 +, 23-). The homozygosity for the GM 3 and GM 23 alleles was significantly associated with susceptibility to PD (p = 0.004, 0.018, respectively). Also, GM 23 genotypes were significantly associated with anti-HSV1 IgG antibody levels in patients (p = 0.0021), but not in controls. These results suggest that GM genes may act as effect modifiers of the reported HSV1-PD association.


Assuntos
Herpesvirus Humano 1 , Doença de Parkinson , Anticorpos Antivirais , Estudos de Casos e Controles , Humanos , Imunidade Humoral , Imunoglobulina G , Alótipos Gm de Imunoglobulina/genética , Cadeias gama de Imunoglobulina , Doença de Parkinson/genética
5.
Drug Discov Today ; 27(9): 2467-2483, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35636725

RESUMO

Canavan disease (CD) is an inherited leukodystrophy resulting from mutations in the gene encoding aspartoacylase (ASPA). ASPA is highly expressed in oligodendrocytes and catalyzes the cleavage of N-acetylaspartate (NAA) to produce aspartate and acetate. In this review, we examine the pathologies and clinical presentation in CD, the metabolism and transportation of NAA in the brain, and the hypothetical mechanisms whereby ASPA deficiency results in dysmyelination and a failure of normal brain development. We also discuss therapeutic options that could be used for the treatment of CD.


Assuntos
Doença de Canavan , Amidoidrolases , Animais , Encéfalo , Modelos Animais de Doenças , Oligodendroglia
6.
Transl Med UniSa ; 24(2): 26-29, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37476201

RESUMO

Several studies suggest that genetic variants that influence the onset, maintenance and resolution of the immune response might be fundamental in predicting the evolution of COVID-19. In the present paper, we analysed the distribution of GM allotypes (the genetic markers of immunoglobulin γ chains) in symptomatic and asymptomatic COVID-19 patients and in healthy controls, all born and residing in Sicily. Indeed, the role played by GM allotypes in immune responses and infection control is well known. Our findings show that the GM23 allotype is significantly reduced in healthy controls. Interestingly, in a previous study, Sicilians carrying the GM23 allotype were associated with the risk of developing a symptomatic Human Cytomegalovirus infection. However, a note of caution should be considered, due to the small sample size of patients and controls.

7.
Nutr Neurosci ; 25(6): 1287-1299, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33297891

RESUMO

Traumatic brain injury (TBI) is a leading cause of human death and disability with no effective therapy to fully prevent long-term neurological deficits in surviving patients. Ketone ester supplementation is protective in animal models of neurodegeneration, but its efficacy against TBI pathophysiology is unknown. Here, we assessed the neuroprotective effect of the ketone monoester, 3-hydroxybutyl-3-hydroxybutyrate, (KE) in male Sprague Dawley rats (n=32). TBI was induced using the controlled cortical impact (CCI) with Sham animals not receiving the brain impact. KE was administered daily by oral gavage (0.5 ml/kg/day) and provided ad libitum at 0.3% (v/v) in the drinking water. KE supplementation started immediately after TBI and lasted for the duration of the study. Motor and sensory deficits were assessed using the Neurobehavioral Severity Scale-Revised (NSS-R) at four weeks post-injury. The NSS-R total score in CCI + KE (1.2 ± 0.4) was significantly lower than in CCI + water (4.4 ± 0.5). Similarly, the NSS-R motor scores in CCI + KE (0.6 ± 0.7) were significantly lower than CCI + water (2.9 ± 1.5). Although the NSS-R sensory score in the CCI + KE group (0.5 ± 0.2) was significantly lower compared to CCI + water (1.8 ± 0.4), no difference was observed between CCI + water and Sham + water (1.0 ± 0.2) groups. The lesion volume was smaller in the CCI + KE (10 ± 3 mm3) compared to CCI + water (47 ± 11 mm3; p < 0.001). KE significantly decreased Iba1+ stained areas in the cortex and hippocampus, and GFAP+ stained areas in all brain regions analyzed - prefrontal cortex, hippocampus, cortex, amygdala (p < 0.01). In summary, our results indicate that KE can protect against TBI-induced morphological and functional deficits when administered immediately after an insult.


Assuntos
Lesões Encefálicas Traumáticas , Cetonas , Ácido 3-Hidroxibutírico , Animais , Lesões Encefálicas Traumáticas/complicações , Modelos Animais de Doenças , Ésteres , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Água
8.
J Alzheimers Dis ; 84(3): 965-968, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602489

RESUMO

We investigated whether FCGRIIB (rs1050501 C/T) and PILRA (rs1859788 A/G) genotypes contributed to the development of Alzheimer's disease (AD). We genotyped 209 African American (AA) and 638 European American (EA) participants for the FCGRIIB and PILRA alleles. In the AA cohort, subjects homozygous for the C allele of FCGRIIB were more than 4 times as likely to develop AD as those homozygous for the alternative T allele. This SNP also interacted with PILRA: participants who were the carriers of the FCGRIIB C allele and PILRA A allele were 3 times as likely to develop AD as those who lacked these alleles.


Assuntos
Doença de Alzheimer/genética , Genótipo , Glicoproteínas de Membrana/genética , Receptores de IgG/genética , Receptores Imunológicos/genética , Negro ou Afro-Americano/genética , Negro ou Afro-Americano/estatística & dados numéricos , Alelos , Humanos , Estudos Prospectivos , Estados Unidos , População Branca/genética , População Branca/estatística & dados numéricos
9.
J Cyst Fibros ; 20(6): 1080-1084, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34246573

RESUMO

BACKGROUND: Chronic infection with Pseudomonas aeruginosa (P. aeruginosa) is a leading cause of death in patients with cystic fibrosis (CF). Immunobiology of P. aeruginosa infection is complex and not well understood. Chronically infected CF patients generate high levels of antibodies to P. aeruginosa, but this response does not lead to clinical improvement. Therefore, additional studies aimed at identification and understanding of the host factors that influence naturally occurring immune responses to P. aeruginosa are needed. In this investigation, we evaluated the contribution of immunoglobulin GM (γ marker) and KM (κ marker) allotypes to the antibody responses to P. aeruginosa lipopolysaccharide (LPS) O1, O6, O11, and alginate antigens and the broadly-conserved surface polysaccharide expressed by many microbial pathogens, poly-N-acetyl-D-glucosamine (PNAG), in 58 chronically infected CF patients. METHODS: IgG1 markers GM 3 and 17 and IgG2 markers GM 23- and 23+ were determined by a pre-designed TaqMan® genotyping assay. The κ chain determinants KM 1 and 3 were characterized by PCR-RFLP. Antibodies to the LPS O antigens, alginate, and PNAG were measured by an ELISA. RESULTS: Several significant associations were noted with KM alleles. Particular KM 1/3 genotypes were individually and epistatically (with GM 3/17) associated with the level of IgG antibodies to O1, O11, alginate, and PNAG antigens. CONCLUSIONS: Immunoglobulin GM and KM genotypes influence the magnitude of humoral immunity to LPS O, alginate, and PNAG antigens. These results, if confirmed in a larger study population, will be helpful in devising novel immunotherapeutic approaches against P. aeruginosa.


Assuntos
Fibrose Cística/complicações , Alótipos Gm de Imunoglobulina/imunologia , Alótipos Km de Imunoglobulina/imunologia , Infecções por Pseudomonas/imunologia , Formação de Anticorpos , Antígenos de Bactérias/imunologia , Feminino , Genótipo , Humanos , Alótipos Gm de Imunoglobulina/genética , Alótipos Km de Imunoglobulina/genética , Masculino , Infecção Persistente , Adulto Jovem
10.
Front Physiol ; 11: 580171, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304273

RESUMO

Acetate, the shortest chain fatty acid, has been implicated in providing health benefits whether it is derived from the diet or is generated from microbial fermentation of fiber in the gut. These health benefits range widely from improved cardiac function to enhanced red blood cell generation and memory formation. Understanding how acetate could influence so many disparate biological functions is now an area of intensive research. Protein acetylation is one of the most common post-translational modifications and increased systemic acetate strongly drives protein acetylation. By virtue of acetylation impacting the activity of virtually every class of protein, acetate driven alterations in signaling and gene transcription have been associated with several common human diseases, including cancer. In part 2 of this review, we will focus on some of the roles that acetate plays in health and human disease. The acetate-activating enzyme acyl-CoA short-chain synthetase family member 2 (ACSS2) will be a major part of that focus due to its role in targeted protein acetylation reactions that can regulate central metabolism and stress responses. ACSS2 is the only known enzyme that can recycle acetate derived from deacetylation reactions in the cytoplasm and nucleus of cells, including both protein and metabolite deacetylation reactions. As such, ACSS2 can recycle acetate derived from histone deacetylase reactions as well as protein deacetylation reactions mediated by sirtuins, among many others. Notably, ACSS2 can activate acetate released from acetylated metabolites including N-acetylaspartate (NAA), the most concentrated acetylated metabolite in the human brain. NAA has been associated with the metabolic reprograming of cancer cells, where ACSS2 also plays a role. Here, we discuss the context-specific roles that acetate can play in health and disease.

11.
Front Physiol ; 11: 580167, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281616

RESUMO

Acetate is a major end product of bacterial fermentation of fiber in the gut. Acetate, whether derived from the diet or from fermentation in the colon, has been implicated in a range of health benefits. Acetate is also generated in and released from various tissues including the intestine and liver, and is generated within all cells by deacetylation reactions. To be utilized, all acetate, regardless of the source, must be converted to acetyl coenzyme A (acetyl-CoA), which is carried out by enzymes known as acyl-CoA short-chain synthetases. Acyl-CoA short-chain synthetase-2 (ACSS2) is present in the cytosol and nuclei of many cell types, whereas ACSS1 is mitochondrial, with greatest expression in heart, skeletal muscle, and brown adipose tissue. In addition to acting to redistribute carbon systemically like a ketone body, acetate is becoming recognized as a cellular regulatory molecule with diverse functions beyond the formation of acetyl-CoA for energy derivation and lipogenesis. Acetate acts, in part, as a metabolic sensor linking nutrient balance and cellular stress responses with gene transcription and the regulation of protein function. ACSS2 is an important task-switching component of this sensory system wherein nutrient deprivation, hypoxia and other stressors shift ACSS2 from a lipogenic role in the cytoplasm to a regulatory role in the cell nucleus. Protein acetylation is a critical post-translational modification involved in regulating cell behavior, and alterations in protein acetylation status have been linked to multiple disease states, including cancer. Improving our fundamental understanding of the "acetylome" and how acetate is generated and utilized at the subcellular level in different cell types will provide much needed insight into normal and neoplastic cellular metabolism and the epigenetic regulation of phenotypic expression under different physiological stressors. This article is Part 1 of 2 - for Part 2 see doi: 10.3389/fphys.2020.580171.

12.
Front Immunol ; 11: 31, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153556

RESUMO

Quinolinate (Quin) is a classic example of a biochemical double-edged sword, acting as both essential metabolite and potent neurotoxin. Quin is an important metabolite in the kynurenine pathway of tryptophan catabolism leading to the de novo synthesis of nicotinamide adenine dinucleotide (NAD+). As a precursor for NAD+, Quin can direct a portion of tryptophan catabolism toward replenishing cellular NAD+ levels in response to inflammation and infection. Intracellular Quin levels increase dramatically in response to immune stimulation [e.g., lipopolysaccharide (LPS) or pokeweed mitogen (PWM)] in macrophages, microglia, dendritic cells, and other cells of the immune system. NAD+ serves numerous functions including energy production, the poly ADP ribose polymerization (PARP) reaction involved in DNA repair, and the activity of various enzymes such as the NAD+-dependent deacetylases known as sirtuins. We used highly specific antibodies to protein-coupled Quin to delineate cells that accumulate Quin as a key aspect of the response to immune stimulation and infection. Here, we describe Quin staining in the brain, spleen, and liver after LPS administration to the brain or systemic PWM administration. Quin expression was strong in immune cells in the periphery after both treatments, whereas very limited Quin expression was observed in the brain even after direct LPS injection. Immunoreactive cells exhibited diverse morphology ranging from foam cells to cells with membrane extensions related to cell motility. We also examined protein expression changes in the spleen after kynurenine administration. Acute (8 h) and prolonged (48 h) kynurenine administration led to significant changes in protein expression in the spleen, including multiple changes involved with cytoskeletal rearrangements associated with cell motility. Kynurenine administration resulted in several expression level changes in proteins associated with heat shock protein 90 (HSP90), a chaperone for the aryl-hydrocarbon receptor (AHR), which is the primary kynurenine metabolite receptor. We propose that cells with high levels of Quin are those that are currently releasing kynurenine pathway metabolites as well as accumulating Quin for sustained NAD+ synthesis from tryptophan. Further, we propose that the kynurenine pathway may be linked to the regulation of cell motility in immune and cancer cells.


Assuntos
Cinurenina/metabolismo , NAD/biossíntese , Ácido Quinolínico/metabolismo , Animais , Biomarcadores/metabolismo , Movimento Celular/efeitos dos fármacos , Gerbillinae , Proteínas de Choque Térmico HSP90/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Imunidade/efeitos dos fármacos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Cinurenina/administração & dosagem , Lipopolissacarídeos/administração & dosagem , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitógenos de Phytolacca americana/administração & dosagem , Poli(ADP-Ribose) Polimerases/metabolismo , Ácido Quinolínico/imunologia , Ratos , Baço/efeitos dos fármacos , Baço/metabolismo , Triptofano/metabolismo
13.
Lancet HIV ; 6(10): e667-e679, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31473167

RESUMO

BACKGROUND: Human monoclonal antibodies that potently and broadly neutralise HIV-1 are under development to prevent and treat HIV-1 infection. In this phase 1 clinical trial we aimed to determine the safety, tolerability, and pharmacokinetic profile of the broadly neutralising monoclonal antibody VRC07-523LS, an engineered variant of VRC01 that targets the CD4 binding site of the HIV-1 envelope protein. METHODS: This phase 1, open-label, dose-escalation clinical trial was done at the National Institutes of Health Clinical Center in Bethesda, MD, USA. Individuals were recruited from the greater Washington, DC, area by IRB-approved written and electronic media. We enrolled healthy, HIV-1-negative adults aged 18-50 years. Inclusion criteria were good general health, measured through clinical laboratory tests, medical history, and physical examination. Participants self-selected into one of seven open groups during enrolment without randomisation. Four groups received a single intravenous dose of 1, 5, 20, or 40 mg/kg of VRC07-523LS, and one group received a single 5 mg/kg subcutaneous dose. Two groups received three doses of either 20 mg/kg intravenous VRC07-523LS, or 5 mg/kg subcutaneous VRC07-523LS at 12-week intervals. The primary outcome was the safety and tolerability of VRC07-523LS, assessed by dose, route, and number of administrations. This study is registered with ClinicalTrials.gov, NCT03015181. FINDINGS: Between Feb 21, 2017, and September 13, 2017, we enrolled 26 participants, including 11 (42%) men and 15 (58%) women. Two (8%) participants withdrew from the study early: one participant in group 1 enrolled in the study but never received VRC07-523LS, and one participant in group 6 chose to withdraw after a single administration. One (4%) participant in group 7 received only one of the three scheduled administrations. 17 participants received intravenous administrations and 8 participants received subcutaneous administrations. VRC07-523LS was safe and well tolerated, we observed no serious adverse events or dose-limiting toxic effects. All reported local and systemic reactogenicity was mild to moderate in severity. The most commonly reported symptoms following intravenous administration were malaise or myalgia in three (18%) participants and headache or chills in two (12%) participants. The most commonly reported symptoms following subcutaneous administration were pain and tenderness in four participants (50%) and malaise or headache in three (38%) participants. INTERPRETATION: Safe and well tolerated, VRC07-523LS is a strong and practical candidate for inclusion in HIV-1 prevention and therapeutic strategies. The results from this trial also indicate that an HIV-1 broadly neutralising monoclonal antibody engineered for improved pharmacokinetic and neutralisation properties can be safe for clinical use. FUNDING: National Institutes of Health.


Assuntos
Anticorpos Monoclonais/farmacocinética , Infecções por HIV/tratamento farmacológico , Administração Cutânea , Administração Intravenosa , Adulto , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/efeitos adversos , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/efeitos adversos , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
Immun Ageing ; 15: 26, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30450119

RESUMO

BACKGROUND: The aim of this study was to analyse the role of GM allotypes, i.e. the hereditary antigenic determinants expressed on immunoglobulin polypeptide chains, in the attainment of longevity. The role played by immunoglobulin allotypes in the control of immune responses is well known as well as the role of an efficient immune response in longevity achievement. So, it is conceivable that particular GM allotypes may contribute to the generation of an efficient immune response that supports successful ageing, hence longevity. METHODS: In order to show if GM allotypes play a role in the achievement of longevity, we typed the DNA of 95 Long-living individuals (LLIs) and 96 young control individuals (YCs) from South Italy for GM3/17 and GM23+/- alleles. RESULTS: To demonstrate the role of GM allotypes in the attainment of longevity we compared genotype and allele frequencies of GM allotypes between LLIs and YCs. A global chi-square test (3 × 2) shows that the distribution of genotypes at the GM 3/17 locus is highly significantly different in LLIs from that observed in YCs (p < 0.0001). The 2 × 2 chi-square test shows that the carriers of the GM3 allele contribute to this highly significant difference. Accordingly, GM3 allele is significantly overrepresented in LLIs. No significant differences were instead observed regarding GM23 allele. CONCLUSION: These preliminary results show that GM3 allotype is significantly overrepresented in LLIs. To best of our knowledge, this is the first study performed to assess the role of GM allotypes in longevity. So, it should be necessary to verify the data in a larger sample of individuals to confirm GM role in the attainment of longevity.

15.
Hum Immunol ; 79(8): 632-637, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29879453

RESUMO

Glycoprotein-A repetitions predominant (GARP) is a transmembrane protein that is highly expressed in breast cancer. Its overexpression correlates with worse survival, and antibodies to GARP appear to play a protective role in a mouse model. No large-scale studies of immunity to GARP in humans have yet been undertaken. In this investigation, using a large multiethnic cohort (1738 subjects), we aimed to determine whether the magnitude of anti-GARP antibody responsiveness was significantly different in patients with breast cancer from that in matched healthy controls. We also investigated whether the allelic variation at the immunoglobulin GM (γ marker), KM (κ marker), and Fcγ receptor (FcγR) loci contributed to the interindividual variability in anti-GARP IgG antibody levels. A combined analysis of all subjects showed that levels of anti-GARP antibodies were significantly higher in patients with breast cancer than in healthy controls (mean ±â€¯SD: 7.4 ±â€¯3.5 vs. 6.9 ±â€¯3.5 absorbance units per mL (AU/µL), p < 0.0001). In the two populations with the largest sample size, the probability of breast cancer generally increases as anti-GARP antibody levels increase. Several significant individual and epistatic effects of GM, KM, and FcγR genotypes on anti-GARP antibody responsiveness were noted in both patients and controls. These results, if confirmed by independent investigations, will aid in devising personalized GARP-based immunotherapeutic strategies against breast cancer and other GARP-overexpressing malignancies.


Assuntos
Neoplasias da Mama/genética , Genótipo , Alótipos Gm de Imunoglobulina/genética , Alótipos Km de Imunoglobulina/genética , Imunoterapia/métodos , Proteínas de Membrana/imunologia , Receptores de IgG/genética , Formação de Anticorpos , Brasil , Neoplasias da Mama/imunologia , Estudos de Casos e Controles , Estudos de Coortes , Epistasia Genética , Etnicidade , Feminino , Humanos , Imunoglobulina G/sangue , Proteínas de Membrana/genética , Polimorfismo Genético , Medicina de Precisão
16.
PLoS Med ; 15(1): e1002493, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29364886

RESUMO

BACKGROUND: VRC01 is a human broadly neutralizing monoclonal antibody (bnMAb) against the CD4-binding site of the HIV-1 envelope glycoprotein (Env) that is currently being evaluated in a Phase IIb adult HIV-1 prevention efficacy trial. VRC01LS is a modified version of VRC01, designed for extended serum half-life by increased binding affinity to the neonatal Fc receptor. METHODS AND FINDINGS: This Phase I dose-escalation study of VRC01LS in HIV-negative healthy adults was conducted by the Vaccine Research Center (VRC) at the National Institutes of Health (NIH) Clinical Center (Bethesda, MD). The age range of the study volunteers was 21-50 years; 51% of study volunteers were male and 49% were female. Primary objectives were safety and tolerability of VRC01LS intravenous (IV) infusions at 5, 20, and 40 mg/kg infused once, 20 mg/kg given three times at 12-week intervals, and subcutaneous (SC) delivery at 5 mg/kg delivered once, or three times at 12-week intervals. Secondary objectives were pharmacokinetics (PK), serum neutralization activity, and development of antidrug antibodies. Enrollment began on November 16, 2015, and concluded on August 23, 2017. This report describes the safety data for the first 37 volunteers who received administrations of VRC01LS. There were no serious adverse events (SAEs) or dose-limiting toxicities. Mild malaise and myalgia were the most common adverse events (AEs). There were six AEs assessed as possibly related to VRC01LS administration, and all were mild in severity and resolved during the study. PK data were modeled based on the first dose of VRC01LS in the first 25 volunteers to complete their schedule of evaluations. The mean (±SD) serum concentration 12 weeks after one IV administration of 20 mg/kg or 40 mg/kg were 180 ± 43 µg/mL (n = 7) and 326 ± 35 µg/mL (n = 5), respectively. The mean (±SD) serum concentration 12 weeks after one IV and SC administration of 5 mg/kg were 40 ± 3 µg/mL (n = 2) and 25 ± 5 µg/mL (n = 9), respectively. Over the 5-40 mg/kg IV dose range (n = 16), the clearance was 36 ± 8 mL/d with an elimination half-life of 71 ± 18 days. VRC01LS retained its expected neutralizing activity in serum, and anti-VRC01 antibody responses were not detected. Potential limitations of this study include the small sample size typical of Phase I trials and the need to further describe the PK properties of VRC01LS administered on multiple occasions. CONCLUSIONS: The human bnMAb VRC01LS was safe and well tolerated when delivered intravenously or subcutaneously. The half-life was more than 4-fold greater when compared to wild-type VRC01 historical data. The reduced clearance and extended half-life may make it possible to achieve therapeutic levels with less frequent and lower-dose administrations. This would potentially lower the costs of manufacturing and improve the practicality of using passively administered monoclonal antibodies (mAbs) for the prevention of HIV-1 infection. TRIAL REGISTRATION: ClinicalTrials.gov NCT02599896.


Assuntos
Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/farmacocinética , Anticorpos Anti-HIV/imunologia , Adulto , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos , Anticorpos Amplamente Neutralizantes , Relação Dose-Resposta a Droga , Feminino , Meia-Vida , Humanos , Infusões Intravenosas , Infusões Subcutâneas , Masculino , Pessoa de Meia-Idade , Adulto Jovem
17.
Immunobiology ; 223(2): 178-182, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29074302

RESUMO

High levels of naturally occurring IgG antibodies to mucin 1 (MUC1), a membrane-bound glycoprotein that is overexpressed in patients with breast cancer, are associated with good prognosis. This suggests that endogenous anti-MUC1 antibodies have a protective effect and, through antibody-mediated host immunosurveillance mechanisms, might contribute to a cancer-free state. To test this possibility, we characterized a large number of multiethnic patients with breast cancer and matched controls for IgG antibodies to MUC1. We also aimed to determine whether the magnitude of anti-MUC1 antibody responsiveness was associated with particular immunoglobulin GM (γ marker), KM (κ marker), and Fcγ receptors (FcγR) genotypes. After adjusting for the confounding variables in a multivariate analysis, we found no significant difference in the levels of anti-MUC1 IgG antibodies between patients and cancer-free controls. However, in patients and controls, particular GM, KM, and FcγR genotypes-individually or epistatically-were significantly associated with the levels of anti-MUC1 IgG antibodies in a racially restricted manner. These findings, if confirmed in an independent investigation, could help identify individuals most likely to benefit from a MUC1-based therapeutic or prophylactic vaccine for MUC1-overexpressing malignancies.


Assuntos
Neoplasias da Mama/imunologia , Etnicidade , Genótipo , Imunoglobulinas/genética , Mucina-1/imunologia , Grupos Raciais , Receptores de IgG/genética , Formação de Anticorpos , Brasil/epidemiologia , Neoplasias da Mama/epidemiologia , Estudos de Coortes , Feminino , Humanos , Imunoglobulinas/sangue , Vigilância Imunológica , Japão/epidemiologia , Análise Multivariada
18.
Immunogenetics ; 70(1): 67-72, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28936707

RESUMO

Exposure to neurotropic viruses, such as herpes simplex virus type 1 and human cytomegalovirus, has been reported to be associated with cognitive impairment in schizophrenia. These viruses have evolved highly sophisticated strategies for decreasing the efficacy of the host immune response and interfering with viral clearance. Particular immunoglobulin GM (γ marker) genotypes modulate these viral immunoevasion strategies, influence antibody responsiveness to viral proteins, and are also associated with susceptibility to schizophrenia, providing an excellent rationale for determining their possible involvement in the cognitive functions in this highly heritable neurodevelopmental disorder. In this investigation, we assessed the cognitive functions (verbal memory, working memory, motor speed, verbal fluency, attention and processing speed, and executive function) in 145 patients with schizophrenia and characterized their DNA for several GM and KM (κ marker) alleles. Particular KM and GM genotypes were significantly associated with verbal memory and attention and processing speed scores, respectively (P = 0.01 and 0.001). Epistatic effects of GM and KM genotypes on attention and processing speed, verbal fluency, and motor speed were also noted (P = 0.031, 0.047, 0.003). These results, for the first time, show that hitherto understudied immunoglobulin GM and KM genotypes-individually and epistatically-contribute to the magnitude of interindividual variability in the cognitive functions in patients with schizophrenia. Additional studies involving these highly polymorphic genes of the immune system are needed.


Assuntos
Imunoglobulinas/genética , Esquizofrenia/imunologia , Adulto , Alelos , Cognição/fisiologia , Feminino , Genótipo , Humanos , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Alótipos Gm de Imunoglobulina/genética , Imunoglobulinas/imunologia , Japão , Masculino , Esquizofrenia/genética
19.
Neurotoxicology ; 63: 84-89, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28939237

RESUMO

Organophosphate chemical threat agents (OP-CTA) exert toxic effects through cholinergic over-activation. However, after the initial cholinergic phase, the pathophysiology shifts to a non-cholinergic phase which leads to prolonged status epilepticus (SE), irreversible neuronal degeneration and long-term damage to the central nervous system. The efficacy of delayed treatments against OP-CTA is generally low due to the fact that most drugs fail to inhibit the later phase of non-cholinergic activation. Recently, we reported that intranasal brain delivery of obidoxime (OBD) provides complete neuroprotection against a lethal dose of paraoxon when administered 5min after intoxication. In follow-up studies, we examined the window of effectiveness and found that OBD lost effectiveness around 15min post-exposure, which corresponds to the onset of the non-cholinergic phase of intoxication. However, we observed that a brief isoflurane administration, the inhalation anesthetic used to facilitate intranasal drug administration, was effective against paraoxon-induced neurotoxicity. Thus, the present study aimed to investigate the time-course and dose-response efficacy of a brief 4min isoflurane administration as a treatment for neurotoxicity induced by OP-CTA. We found that isoflurane is a potent anti-seizure agent and neuroprotectant when administered between 20 and 30min after paraoxon exposure, stopping SE within 10min of administration and preventing acute neurodegeneration seen 24h later. We also found that the seizure blocking and neuroprotectant properties of isoflurane, when administered 30min after paraoxon, are dose-dependent. The effectiveness and current clinical use of isoflurane support its use as an innovative approach for post exposure treatment of organophosphate poisoning.


Assuntos
Anestésicos Inalatórios/administração & dosagem , Isoflurano/administração & dosagem , Intoxicação por Organofosfatos/tratamento farmacológico , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/patologia , Animais , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/administração & dosagem , Modelos Animais de Doenças , Seguimentos , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Cloreto de Obidoxima/administração & dosagem , Intoxicação por Organofosfatos/etiologia , Intoxicação por Organofosfatos/patologia , Paraoxon/toxicidade , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
20.
Front Mol Neurosci ; 10: 161, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28626388

RESUMO

Canavan disease is caused by mutations in the gene encoding aspartoacylase (ASPA), a deacetylase that catabolizes N-acetylaspartate (NAA). The precise involvement of elevated NAA in the pathogenesis of Canavan disease is an ongoing debate. In the present study, we tested the effects of elevated NAA in the brain during postnatal development. Mice were administered high doses of the hydrophobic methyl ester of NAA (M-NAA) twice daily starting on day 7 after birth. This treatment increased NAA levels in the brain to those observed in the brains of Nur7 mice, an established model of Canavan disease. We evaluated various serological parameters, oxidative stress, inflammatory and neurodegeneration markers and the results showed that there were no pathological alterations in any measure with increased brain NAA levels. We examined oxidative stress markers, malondialdehyde content (indicator of lipid peroxidation), expression of NADPH oxidase and nuclear translocation of the stress-responsive transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF-2) in brain. We also examined additional pathological markers by immunohistochemistry and the expression of activated caspase-3 and interleukin-6 by Western blot. None of the markers were increased in the brains of M-NAA treated mice, and no vacuoles were observed in any brain region. These results show that ASPA expression prevents the pathologies associated with excessive NAA concentrations in the brain during postnatal myelination. We hypothesize that the pathogenesis of Canavan disease involves not only disrupted NAA metabolism, but also excessive NAA related signaling processes in oligodendrocytes that have not been fully determined and we discuss some of the potential mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...